「動く光」で高分子合成のエネルギー効率を大幅改善
露光エネルギーを90%削減し持続可能社会の実現に前進
公開日:2024.08.22
要点
- 光を移動させながら照射することで高分子を低エネルギーで合成する新規手法を開発
- ポリメタクリル酸メチルなどの多彩な高分子合成への適用に成功
- 製造工程のエネルギー低減により、高分子材料の低コスト化や環境保全に貢献
概要
東京工業大学 科学技術創成研究院 化学生命科学研究所の宍戸厚教授と同大学 物質理工学院 応用化学系の石山拓途大学院生らの研究グループは、高分子[用語1]合成における光重合[用語2]効率を格段に向上させる新たな手法を開発した。
本研究で開発した手法は、光を一方向に移動させながら照射し光重合を進行させることで、重合過程における分子の拡散および流動場を発生させるものである。従来の静止光による光重合と比較して、重合完了に必要な露光エネルギーを最大で90%削減することに成功した。さらに、動く光により合成した高分子の分子量[用語3]は静止光を用いた場合よりも20倍も増大することを明らかにした。本手法は、実社会で広く用いられている多彩な高分子の合成にも適用でき、非常に汎用性に優れた手法である。
光重合は高分子の合成に留まらず、自動車や電気機器のコーティング、パッケージの印刷など多岐にわたる分野で利用されている。製造工程のエネルギーおよびコスト効率を大きく改善することが期待できる。
この成果は、7月29日に米国化学会誌「Macromolecules(マクロモレキュールズ)」に掲載された。
背景
私たちの身の回りには高分子材料が広く存在し、その応用範囲は多岐にわたる。例えばプラスチック、ゴム、繊維、塗料、接着剤などは、日常生活や産業分野で重要な役割を果たしており、現代社会において必要不可欠な高分子材料である。
しかしながら、近年のものづくりの現場では、材料製造時のエネルギー消費の増大や環境負荷の増大が大きな問題となっている。エネルギー資源の枯渇や持続可能な開発の必要性も叫ばれており、これらの問題を解決する技術革新が求められている。
高分子材料の製造プロセスとして用いられる技術の一つに光重合がある。これは光照射により重合反応を開始し、高分子を合成する手法である。このプロセスでは、多量の光エネルギーを使用するため、光重合技術の進展によるエネルギー効率の向上や環境負荷の軽減が望まれている。
研究成果
今回宍戸教授らの研究グループは、光を動かしながら照射し重合することで、分子量の大きな高分子を低エネルギーで合成する手法を開発した。
本手法においてはスリット状の光を一方向に動かしながら光重合(図1A左)を進行させた場合と、光を動かさずに全面を均一に照射して光重合(図1A右)を進行させた場合での生成物の違いを比較した。その結果、光を動かし流動場中で重合することで、生成高分子の分子量は1.5–20倍、重合完了に必要な露光エネルギーは最大1/10(図1B)になることを発見した。本手法は、ポリメタクリル酸メチル(MMA)やポリブチルアクリレート(BA)などの工業用的な用途としても広く用いられている汎用高分子の合成にも適用できることから、極めて高い汎用性を有する。
光照射下で進行する反応はラジカル[用語4]重合と呼ばれるものであり、ラジカル重合には、(1)ラジカルがモノマーに付加することによる反応の開始、(2)モノマーに付加したラジカルが新たなモノマーに連鎖的に付加する成長、(3)ラジカル同士が衝突することによる反応の停止という3つの過程が存在する。一般的な静止光による光重合では露光エネルギーが多くなるほど、系中に同時に大量のラジカルが発生するため、モノマーへのラジカル付加による反応開始(1)とラジカル同士の衝突による反応停止過程(3)の頻度が高くなり、成長過程(2)が進みづらくなる。その結果、露光エネルギーの増大に伴ってモノマー転化率(重合の進み具合)は緩やかに増加し、生成高分子の分子量は減少する。
対して、動く光を利用した場合は、光が照射されている部分的な領域でのみラジカルが発生し重合反応が進行する。照射部でのみ高分子が生成することで、照射部と非照射部の高分子の濃度勾配が生じる。濃度差を埋めるため、成長途中の高分子は非照射部に拡散し重合反応を継続する。拡散した高分子は、光が当たっていないラジカル濃度が非常に低い空間で反応するため、停止反応が抑制される。したがって、動く光を利用することで成長過程(2)が進行しやすくなり、分子量が大きな高分子を極めて効率よく生成することができる。
- 図1.
- 動く光の利用により重合効率が格段に向上。(A)動く光と静止光による光重合の様子、(B)さまざまな露光エネルギーで光重合した際のモノマー転化率(重合の進み具合)
社会的インパクト
本研究で開発した手法は、高分子合成に要する光エネルギーを従来手法に比べて90%削減可能であることを見出した。この革新的な技術により、日常生活や産業分野で使用される高分子材料の製造コストを大幅に削減することができると考えられる。低エネルギー消費の材料製造が実現することで、持続可能な社会への移行が促進されるとともに、材料の価格低下による高機能材料・デバイスの普及が期待できる。
今後の展開
開発した手法は、既存の化合物や反応系を変更することなく、照射光に動きを加えるというシンプルな手順のみで重合効率を大幅に向上させることができる。工業的にも多様な場面で用いられる光重合のエネルギーコストを低減することができるため、製造工程や高分子合成の基盤技術への応用が見込まれる。
付記
本研究は、日本学術振興会(JSPS) 新学術領域研究「発動分子」(JP18H05422)、JSPS 基盤研究(B)(22H02128)、JSPS 特別研究員奨励費(24KJ1079)、科学技術振興機構(JST) 戦略的創造研究推進事業(CREST)(JPMJCR18I4)、JST次世代研究者挑戦的研究プログラム(SPRING)(JPMJSP2106)の助成を受けて行われた。
用語説明
[用語1] 高分子 : 多くの分子(モノマー)が連結してできた大きな分子である。プラスチック、ゴム、繊維など、現代社会における多くの製品が高分子材料から作られている。
[用語2] 光重合 : モノマーから高分子を形成するプロセスの一つであり、光照射により反応が開始する。
[用語3] 分子量 : 分子の質量を表す指標。高分子の場合、分子量が大きいことは、多くのモノマーが連結していることを示す。
[用語4] ラジカル : 対になっていない電子を持つ原子または分子である。この性質により非常に反応性が高く、化学反応において重要な役割を果たす。特に、ラジカル重合のプロセスでは、ラジカルがモノマーを連結させ、高分子を形成する。
論文情報
掲載誌 : | Macromolecules |
論文タイトル : | Spatiotemporal Irradiation-Induced Molecular Flow Enables Distinct Photopolymerization |
著者 : | T. Ishiyama, H. Nakamura, M. Aizawa, K. Hisano, S. Kubo, A. Shishido |
DOI : |
- プレスリリース 「動く光」で高分子合成のエネルギー効率を大幅改善 —露光エネルギーを90%削減し持続可能社会の実現に前進—
- 曲げた機能性フィルムの表面ひずみ計測法を開発|東工大ニュース
- 大面積の分子配向を一段階で光パターン形成 —「動的光重合」技術を開発し多彩な配向パターンを実現—|東工大ニュース
- 機能性フィルムの表面歪み計測法を開発 —ウェアラブル端末やフレキシブルディスプレイ製造に威力—|東工大ニュース
- 宍戸厚 Atsushi Shishido|研究者検索システム 東京工業大学STARサーチ
- 宍戸・久保研究室
- 宍戸厚・久保祥一研究室| 物質理工学院 研究室検索サイト
- #32 宍戸厚「曲がるスマホに高分子の解析から迫る」× 中野民夫 Tokyo Tech DLab "STAY HOME, STAY GEEK" 研究者インタビュー|YouTube
- 化学生命科学研究所
- 科学技術創成研究院(IIR)
- 物質理工学院 応用化学系
- 研究成果一覧
お問い合わせ先
東京工業大学 科学技術創成研究院 化学生命科学研究所
教授 宍戸厚
Email ashishid@res.titech.ac.jp
Tel 045-925-5242
取材申し込み先
東京工業大学 総務部 広報課
Email media@jim.titech.ac.jp
Tel 03-5734-2975 / Fax 03-5734-3661
0 件のコメント:
コメントを投稿