天然物の全合成は現代でも創薬化学 (メディシナルケミストリー) のための良いトレーニングとなる、と述べる Viewpoint 論文が ACS Medicinal Chemistry Letters 誌で2024年1月に公開され、2024年6月現在の Most Read Article として取り上げられています。
Total Synthesis as Training for Medicinal Chemistry
Lewis D. Pennington
ACS Med. Chem. Lett. 2024, 15, 2
著者の Lewis D. Pennington は現在 Mystic River Medicinal Chemistry, LLC という合同会社でコンサルタントを務め、米国での特許18件、WO特許出願37件を擁し、2品目の新薬を世に送り出した創薬化学者とのこと。2003年から2015年まで Amgen に勤務していたようです (Linkedinのプロフィールより)。
全合成と創薬化学
全合成とは言わずもがな、有用天然物の合成経路を設計し、最適なルートで、可能な限り収率良く目的物を得ることを目指す、有機合成化学の花形研究です。全合成のプロセスでは、有機合成のトレーニングだけでなく、構造決定の学習や時には生理活性の検討も含めたさまざまな知見を得ることができ、さらには新しい化学反応の開発にも繋がります。
一方、現代のメディシナルケミストリーでは、挑戦的な治療標的や、各パラメータの迅速な最適化、機能横断的 (cross-functional) な性質の追求など、合成だけに留まらない分野横断的な知識が必要になってきています。また、核酸やペプチド、抗体–薬物複合体 (ADC) など、新規モダリティをの開発にもメディシナルケミストリーは関わってきますが、その一方、ケミカルバイオロジーや計算化学の訓練の方が製薬業界において全合成よりも有益であるとの指摘も出てきているとのことです。現代では AI 創薬 (外部リンク) が一大潮流を築こうとしていますが、全合成は果たして現代の創薬化学に繋がる有益な学問であり続けているのでしょうか?
本論文での著者の答えは「YES」であり、メディシナルケミストにとっての訓練としての全合成の価値について、これからも継続的に増大していくだろうと論じています。
現代の創薬化学、とりわけ低分子創薬では、構造の新規性と分子の複雑さが増しており、天然物を基盤とした医薬品も依然として低分子〜中分子薬のテンプレートであり続けています。また、Fsp3というパラメータに代表されるように、天然物に類似した平面性が低くフレキシビリティの高い分子が創薬において成功確率の高い分子となり得ることが提唱されるなど、全合成から学べることは非常に多くあります。
全合成と創薬化学の対応性
元論文の Figure 1には、全合成と低分子創薬化学のサイクルを対応させた図が示されています (下図)。
全合成および創薬化学のサイクルの対比 元論文 Figure 1より転載 |
全合成も創薬化学も、主に低分子に焦点を当て、デザインと合成のサイクルを回し目的となる分子に到達させます。全合成は入手容易な出発物質から始まり、一連の合成ステップを経て目的の天然物を得ます。一方、創薬化学はスクリーニングなどにより見出されたヒット化合物から始まり、誘導体の設計と合成を経て臨床候補化合物を得るのが目的となります。両者とも、目的化合物を得るための分子設計、合成ルートの構築、中間体またはアナログの分析や時には生理活性試験を行う点で、研究サイクルに共通項が見出せます。また近年では、AI や機械学習、ハイスループット試験などの技術も活用することが創薬化学のみならず全合成においても増加していると著者は述べています。
全合成と創薬のプロセスの対比
著者は全合成と創薬の各プロセスにおける対比表を提唱しています。個人的には対比となるのか?という部分もありますが、全合成のプロセスで培われるさまざまなスキルは創薬化学者として着任した時に対比させて考えることができる、と著者は主張しています。以下に、元論文の表の邦訳版を掲載します。
Table, Analogous Conceptual Frameworks of Total Synthesis and Medicinal Chemistry
全合成 | 創薬化学 |
天然物 | 臨床候補化合物 |
化学反応 | 構造展開 |
反応と合成のデザイン | 薬物・プローブのデザイン |
逆合成解析 | De novo デザイン |
多段階合成 | Multi-parameter optimization (多要素を指向した最適化) |
構造活性相関 | 構造活性相関 |
収束的合成 | Divergent synthesis (発散的合成) |
最長直線工程 | 誘導体デザインサイクルの数 |
収率 | 活性向上 |
アトムエコノミー | リガンド効率 |
総収率 | 安全性と有効性 |
化学反応性 | 代謝安定性 |
遷移状態 | 結合様式 |
多段階合成 (カスケード反応) | Activity cliffs (活性の崖)* |
立体選択性 | Eudysmic ratio (エナンチオマー間の活性比) |
位置および化学選択性 | 代謝ソフトスポット (薬物代謝を受けやすい部位) |
全合成から創薬に移る際には代謝やリガンド効率、安全性のバリデーションなど基本的な事項を学び直す必要があるかとは思いますが、上記のような対比を意識していれば理解しやすくなるかもしれません。
*Activity cliffs (活性の崖)…SAR空間における不連続な領域であり、活性化合物の小さな構造変化が大きな活性向上をもたらす現象。2012年に J. Bajorath により提唱された。まるで崖のように化合物の活性が向上することから、その名前が付けられた。(https://www.titech.ac.jp/news/2020/047838 より引用)
結語
この 30 年で創薬化学の様相には多くの変化がありましたが、全合成は、今日でも学術界で最も適したトレーニングのひとつであり続けていると著者は主張しています。全合成では、多様な化学反応を幅広く経験し、複雑な分子を効率的に合成する手法を学ぶことができます。全合成で培ったスキルは創薬化学にも容易に適用でき、オリゴ核酸、オリゴペプチド、オリゴ糖、ADCなど、低分子以外のモダリティの追求も応用できます。最後に、全合成および創薬化学のプロセスは、どちらも Dead End や回り道を多く経験することとなり、最終的な成功のために戦略的な計画、適応力、粘り強さなどが要求される点でも似通っていると著者は締めています。
一方、創薬化学では全合成に比べて使用される反応に偏りがあることも事実です (参考記事: 創薬開発で使用される偏った有機反応)。転位やメタセシスなどの出番は創薬化学ではあまりなく、縮合やカップリングが多くを占めるのが特徴なのに留意する必要はあるでしょう。
それでも、全合成というアカデミア以外ではなかなか学ぶことのできないスキルを活用し、製薬・創薬の現場の門を叩くことは、逆の方法はできない有用なキャリアパスであると考えられます。スキルアップのための全合成研究、そして、有用な天然物を自分の手で合成するという全合成そのものの面白みは、これからも化学者を魅了してやまないものと信じます。
関連リンク
・なんとオープンアクセス!Modern Natural Product Synthesis (ケムステ内記事)
・30年後の天然物合成研究 (山口潤一郎 研究室)
・全合成はオワコン?全合成のこれまでと未来 (ネットdeカガク)
関連書籍
- 有機合成化学協会
- 化学同人
- 価格¥6,050(2024/06/25 09:40時点)
- 発売日2009/05/01
- 商品ランキング489,830位
カスタマーレビューを見る- 哲雄, 長野
- 東京化学同人
- 価格¥4,290(2024/06/24 14:14時点)
- 発売日2018/10/01
- 商品ランキング473,660位
カスタマーレビューを見る
0 コメント:
コメントを投稿